Exponential Family Hybrid Semi-Supervised Learning
نویسندگان
چکیده
We present an approach to semi-supervised learning based on an exponential family characterization. Our approach generalizes previous work on coupled priors for hybrid generative/discriminative models. Our model is more flexible and natural than previous approaches. Experimental results on several data sets show that our approach also performs better in practice.
منابع مشابه
PRE-PRINT (Do Not Redistribute) Simple, Robust, Scalable Semi-supervised Learning via Expectation Regularization
Although semi-supervised learning has been an active area of research, its use in deployed applications is still relatively rare because the methods are often difficult to implement, fragile in tuning, or lacking in scalability. This paper presents expectation regularization, a semi-supervised learning method for exponential family parametric models that augments the traditional conditional lab...
متن کاملActive Semi-Supervised Learning Method with Hybrid Deep Belief Networks
In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we co...
متن کاملHybrid Deep Belief Networks for Semi-supervised Sentiment Classification
In this paper, we develop a novel semi-supervised learning algorithm called hybrid deep belief networks (HDBN), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construc...
متن کاملMulti-Instance Mixture Models and Semi-Supervised Learning
Multi-instance (MI) learning is a variant of supervised learning where labeled examples consist of bags (i.e. multi-sets) of feature vectors instead of just a single feature vector. Under standard assumptions, MI learning can be understood as a type of semisupervised learning (SSL). The difference between MI learning and SSL is that positive bag labels provide weak label information for the ins...
متن کاملHybrid Deep Discriminative/Generative Models for Semi-Supervised Learning
Most methods in machine learning are described as either discriminative or generative. The former often attain higher predictive accuracy, while the latter are more strongly regularized and can deal with missing data. Here, we propose a new framework to combine a broad class of discriminative and generative models, interpolating between the two extremes with a multiconditional likelihood object...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009